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SUMMARY

The recogniton of speakers in an open set [19], text-independent environment is
described. The recognition occurs without any prior training and in both noisy and clear
backgrounds in as little as 1.6 seconds. Investigations and testing were done in the areas
of: feature characterization of speakers, pre-filtering of classifier input, and structure of
classifiers for recognition.

A feature-based speaker model was used consisting of Linear Prediction Coefficient
(LPC) Cepstrum, Reflection Coefficients, and Mel Cepstrum for classification, and
energy, pitch, zero crossings for voiced/unvoiced decisions..

A prefiltering structure for speech input segments using an expert system implementing
hypothesize and test for relevance was investigated. It attempted to maximize
classification performance by pre-selection of most likely voiced speech segments prior
to classification.

The classifier used was based on ART [3] and fuzzy Min-Max [25]. It is a neural
network with output categories represented by a fuzzy hypercube. A hypothesis and test
is performed by the network for overlapping categories where their fuzzy membership
representations are interpreted as degrees of typicality, rather than relative [15]. For
category control both a vigilance test and overall hypervolume limit test are used. The
hypercube limit is extended beyond the unit hypercube(as in [25]) to allow for more
“noisy” feature hypercubes. The network has 7 layers: input, transform, process,
hypothesize, test, functional, and category. The output is a category layer represented by
a fuzzy feature hypercube for each created class. The network is described in a hybrid
neuronal-functional method.

A speaker recognition system (based on [12,13]) was tested using the Switchboard [27]
and Greenflag [28] data bases. Utterances averaging 0.5 to 7.0 seconds in length were
tested, with over 5 hours of conversation for 8 speaker groups, with less time for 12 and
16 speaker groups. The fuzzy hypercube neural network, characterizing one speaker per
category, produced an average of 6.29 correct and 0.29 incorrect categories out of a
possible 8 total, with no prior training. Overall percent correct classification was found
to be 66.9% average for 8 speaker groups.

vii




1. INTRODUCTION

The problem of text independent speaker recognition has been of interest to many
investigators (see Peacocke [18] for an introduction, Atal [1] for some technical issues.)
Markel and Davis [17] obtained text-independent speaker recognition results of 98%
correct requiring an average of 39 seconds of speech. The proper choice of signal
features for effective speaker recognition is a major issue (see Reynolds [20], Soong [26],
Pellisier [19]).

The system described requires recognition to be made with:
e Noisy environment

e Average of 3 seconds of speech

e No prior learning/training

The speakers considered were taken as an "open-set" task [19], where the recognition
system had to classify both speakers it had “heard and not heard before.” Speaker
recognition involving text independent information in an open set environment has had
limited success to date using short-time samples [19].

This effort was concerned with recognizing an individual speaker's voice out of a set of
voices, in a text-independent and short-time environment. It involved two investigations.
First, generation of a descriptive set of voice features sufficient to characterize a speaker
in the problem environment, and second, formulation of a reliable classification without
any prior training given the feature set based on voiced segments.

A Speaker Recognition System (SRS) [12,13] was used as a test vehicle which accepted
either analog or digitized voice signals, and produced a speaker characterization. Feature
processing developed a set of descriptive signal features which were classified into
speaker classes. This report develops details for the following areas of the SRS.

Feature Processing

e C(Classifier Pre-Processing
e Neural Network Classifier
e Test Results

Fuzzy ART

The basic operation of “adaptive resonance” in the standard ART is carried over to the
fuzzy ART. The basic equations which govern the fuzzy ART are based on the equations
from the standard ART architecture where the intersection operator is replaced by its
fuzzy counterpart, the minimum operator. An introduction of the mathematics governing
the fuzzy ART is given here, based on Carpenter et al. [2,3,4,5].

The fuzzy ART system consists of three layers: the input layer (F0), processing layer
(F1), and output category (F2) layer. Associated between layers F1 and F2 are a set of
weights directed from F1 to F2. A fundamental difference between the Fuzzy ART and




prior continuous versions are the simplification of the “resonance criteria” by use of only
bottom-up weights in the matching process. The matching process consists of two
matching operations:

e Degree which input A matches output category C

e Degree which category C matches input A

For the following, the norm of a vector A, which gives an indication of its “size,” is
defined as

ZIEDY 1)

The following operations and data structures are associated with each of these layers:

a;

Input Layer. Given an input vector A, 4 ={a,} or optionally, with the complement
A= {aj,af}, j=L12,.,N, 2)

C —1_ .
where a; =1-a, is the complement of a,.

The addition of the complement of the input vector has the advantage that A is now self-
normalized, using the definition of norm in Eq. 1:

Nin Ny N,
l4]=|@,.a9)| =3 a,+3 . A-a) =3 =N, 3)
j=1 J=1 =1

QOutput Layer. The output layer F2 consists of a set C of N active categories,

C={c/,esCy_}

Each category vector ¢, €C has an associated LTM weight set

W, ={W Wy s Won, s}

Processing Layer. A category Choice Function T j measures the degree which input A is

a match to category ¢, and its associated W, :
4w, | _[MINCAH, )

= = @)
a+lp,| e+
where « > 0 is a choice parameter.
T is the best category choice, and is calculated as the union of all 7'y.
T =LJJT, = MAX(T}) )

There are two possible cases that can occur once a category choice is attempted:

Case 1. Equation 5 produces a choice J. A test is performed on the preliminary choice J
to test if it meets a threshold criteria called the vigilance test, where the degree to which
the preliminary category matches the input A is compared against a threshold p




lacw,| |MiNcaw,)| N ©
I 2/ —
If the vigilance criteria of equation 6 is not met, the preliminary choice [J] is said to be
“reset,” and another category choice according to Egs. 4 and 5 is made from the set of
active categories in C. If the vigilance criteria are met, then the system is said to be in a
state of resonance, and the input A is incorporated into category J by the following:

wi = flanws)+(1- Bw ©)
Fast learning is said to occur when f=1.

Case 2. Equation 5 produces no choice. If no category choice can be made, a new
category is created C,,, with

Wi = Wity = 4. ®)
Initialization: N=0
A simplified fuzzy ART architecture is described by Kasuba [14].

2. FEATURE» PROCESSING

The speaker recognition system relies on the underlying model assumptions on which it is
based. In this case our model is a heuristic one which loosely follows the Linear
Predictive Coefficients (LPC), but includes other features to add fidelity to the spectrum
of descriptive power of the system. Prior works in characterizing speaker features have
been numerous. Atal [1] identified spectral information and cepstrum parameters for
Automated Speaker Recognition (ASR). Columbi [9] provides an overview for both
speaker and listener feature models. Other models are the RASTA/PLP [11]. Soong et
al. [26] investigated transitional spectral features and stated “instantaneous spectral
features carry more speaker relevant information than transitional in ASR.” Reynolds
[20] investigated several features and widths, and reported “simple cepstral mean removal
was the best channel compensation technique for all features” (he tested). Pellisier [19]
specifically investigated features in the open set recognition case. He reported that
liftered LPC cepstral with normalized log energy appended are optimal for the TIMIT
corpus, and LPC reflection with normalized log energy are optimal for the tactical
GREENFLAG corpus. “In general, LPC Cepstrum appended or not, perform well.”
Additionally, [19] found that transitional features did not perform as well as static
features, and that decision fusion techniques are the best means of capitalizing on the
temporal information. Mel frequency cepstrum also performed well, but not as well as
LPC cepstrum and reflection coefficients.

The characterization of a speaker's voice signal into representative features can be broken
into several basic phases of processing: Signal Conversion and Formatting, Signal
Segmentation, and Feature Processing.




2.1 Signal Conversion and Formatting

Voice signal is converted to a digital signal representation for the next stage of
segmentation processing. Raw voice signal can be captured by a microphone, from a
receiver detector, or other transducer, as well as being provided by a digitized database.
This signal is amplified or attenuated, and applied to an A/D converter.

The NIST SPHERE speech format standard was used for control of the voice signal data
used in the investigation. In the case of digitized database packages, the NIST/SPHERE
voice representation was used as an interface standard. Additionally, it provides
conversion information, such as Analog/Digital rates.

2.2 Signal Segmentation

Signal Segmentation consists of processing the digital signal to determine suitability for
the actual feature space representation and processing. This is accomplished through two
separate operations on the signal segments, time segmentation, and voiced/unvoiced
signal set partition.

2.2.1 Time Segmentation

Time segmentation of the input signal develops a basis for segment to segment
processing and averaging over many segments. The segment length is taken from FFT
requirements and the sampling rates for the Analog/Digital converter. Speech segments
in the range 20-50 ms are created for processing by the system one segment at a time.
The segments can overlap by 0-100% of the signal, and tests using different overlaps
were performed. A more detailed view of the segmentation process is seen in figure 1. A
series of definitions is given in terms of signal processing.
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Signal. Time function resulting from signal conversion and formatting operation of
section 2.1. The unprocessed signal V has the basic characteristics of being non-periodic,
bounded, energy limited, duration limited, and band limited:

V(T)={x;x(t+T)# x(t), —-o<t<ow} [non-— periodic]
V(K)= {x;lx(t)| <K, —-owo<t<w} [bounded]

V(K)={x; [x’(t)di <K} [energy-limited]

=00

V(T)={x;x(t)=0forall [f|>T } [duration—limited]

ViWy={x;X(f)= ﬂ]x(t)e"' gt =0 forall | f | >W } [band — limited]

where K is a positive, real number, T is a period, W is frequency band

Burst Signal. A burst B/ of a signal V, is a consecutive individual duration-limited
segment of a signal, in a series of one or more non-overlapping segments. The signal set
V contains all the signals over a time period of interest.

14 =UVj , v, =UB,! where j=1,2,....N, and i=1,2,....N, )
J i

B,NnB,=0 il#i2 overalli
N, is the number of signals, N, is the number of bursts in signal j. All the V; are assumed
to be independent. Each burst is composed of a series of non-overlapping segments. The
following criteria on the bursts hold:

a) The segments S, of the burst B/ are predominantly from the set of voiced

segments.

b) The burst length is limited to a2 maximum value 7,.., .

A relation bounding the number of segments N ;eg in any burst [i] is defined as
T2 <N! T foralli=1,2,.,N; - (10)

max seg * seg

where T, is the segment constant time, and N wg 15 the number of segments in burst i

Segment Overlap. Each of the N,
each consecutive segment has [jj] samples of signal in common with the previous
segment. If the number of samples in a segment is N, , we have the following relation
for the degree of overlap, D,

J]
D, = 11
ol N ( )

sam

The SRS testing varied D, from 0-50%.

segménts in burst B/ is said to uniformly overlap if




2.2.2 Voiced/Unvoiced Signal Set Partition

A voiced/unvoiced partition of the signal segment set is made through an algorithm based
on [1]. This set partition is made using elementary signal features such as average zero
crossings [22], average pitch [21], and average log energy [22]. The methods to develop
each are described below.

Pitch The Average Magnitude Difference Function (AMDF) [21] is used for pitch
extraction. It is a variation on autocorrelation analysis where, instead of correlating the
input speech at various delays, a difference signal is formed between the delayed speech
and the original. At each delay, the absolute magnitude of the difference is taken. At
delay = 0, the difference signal is always zero but exhibits deep valleys at delays
corresponding to the pitch period of voiced sounds. The AMDF pitch extractor was
chosen because it gives good estimation of pitch contour and requires no multiply
operations as in the autocorrelation method, thus improving efficiency. The following is
the AMDF algorithm for extracting the Pitch Period per segment of speech:

Step 1. Using the Difference relation in (1), find the AMDF for delay n >= 0,
where n=0,1,...,.Ngam,

N' = number of samples in the subset of the chunk,

Sk is a sample from the original signal,

Sk-n represents a sample from signal delayed by n.

N =N, *075

= ——Z NS, -8, (12)
A percentage of samples in Eq. 12 of 75% were used in the AMDF correlation.

Step 2. From the AMDF find the first pitch valley where n > 0. The delay at the point of
the valley is the pitch period. The inverse of the pitch period is the pitch P of the voiced
speech in frequency.

Average Zero Crossings. The average zero crossings is determined from the number of
sign changes in a signal segment over time. A count C is made over the entire segment
length T by counting the number of times the following occurs between each sample x(n)
and sample x(n-1) in the segment,

sign[x(n)] # sign[x(n-1)] (13)
The average zero crossing »_ is equal to
2f,
=== 14
T (14)

Since the energy of voiced speech signal is concentrated below 3 kHz, and the energy of
fricatives is generally above 3 kHz, zero crossing information can be used as a feature in
voice/unvoiced speech characterization [21].




Average Log Energy is another signal measure used for voiced/unvoiced detection. It is
computed on each speech segment. The energy calculation is given by [22]

1 N
E,, =10Log, (?v— D) (15)

Voiced/Unvoiced Rule. The Voiced/Unvoiced characterization of a single segement is a
majority-based decision using criteria of the pitch, zero crossings, and Average Log
Energy of each input segment. The following algorithm was used:

Voiced/Unvoiced Algorithm: Given: P,n_,E,  fora segment

Step 1: M=0
Step 2:IF n_,, <n, <n,,  THEN M=M+1
Step 3:IF E,\,, 2 E;, THEN M=M+1
Step 4: CASE M
2: “Voiced”
0: “Unvoiced”
I1: IF P, . <P<P, "Voiced”
ELSE “Unvoiced”
where

P ., P are the minimum and maximum pitch, 30-500 Hz

n_. .. arethe minimum (30) and maximum (3000) zero crossing frequency
E_,, is the minimum voiced energy threshold
If the majority of the tests are true then the speech segment is assumed to be voiced.

Otherwise the segment is assumed unvoiced and is discarded.

2.3 Signal Feature Generation

The feature processing calculates various signal transform features which represent
different characterizations of a speaker through his voice signal. Linear Prediction Coding
finds the coefficients from the Inverse Filter, A(z), defined by Markel [16]. The
significance of the Inverse Filter is that it can realize a model of the physical speech
production system such as the Glottal G(z), the Vocal Tract V(z) and the Lip Radiation

L(z) system [3].
A(z) = 1+Zp:aiz'i (16)
= 1/G(z)\’7=(lz)L(z)

The signal feature processing is performed in three consecutive phases: a) LPC Analysis,
b) Mel Cepstrum Calculation and c) Feature Scaling.




2.3.1 LPC Analysis
The LPC analysis consisted of setting filter constants and initialization parameters,

followed by Pre Emphasis, Hamming Window, Auto Correlation, D’Urbin expansion

(LPC/autocorrelation and Reflection Coefficients), LPC Cepstrum, and Delta Cepstrum.

'2.3.1.1 Pre-Emphasis:
A given segment of speech is pre-emphasized by the following function.

w(i) = s(i)—0.98s(i - 1), i=12,.,N_.,, 17)
where s(i) is a sample in a segment

2.3.1.2 Hamming Window:
The use of a Hamming window reduces effects of oscillations and poor convergence.

L [lil=E,  0.54-[0.46cos 2]
w(i) = . | (18)
otherwise, 0
2.3.1.3 Autocorrelation Coefficients:
The auto correlation coefficients C(i) are determined by:
Ny =i

C(z)— ZS(])S(J‘*") for i=1,...,0 oy (192)

normalizing,
iy =0 fori=1,..,0,,. (19b)
C(0)

where O, is the correlation order.

2.3.1.4 D’Urbin Expansion:

Function to compute LPC parameters with D’Urbin's formula. The LPC and reflection
coefficients are calculated using the autocorrelation coefficients C(i).

D’Urbin's formula:
1. Initialization

Ipc, =10
Ipc, = -2
i

o = co[1-Ipc}]
2. Algorithm
DO FOR i=2 TO O,




jsi

—lec, *Cisjn
=
==
H(l -r} Xl —r,.z)
k=2
FOR j=2 TO Oy,
A; =lpc; +1,*Ipc,_;.,
lpc; = 4,
Ipc, =10
FOR j=1 TO Oy,
lpcj = —lpci+1

2.3.1.5 LPC Cepstrum

The Cepstrum [9] is, by definition, the inverse Fourier transform of the logarithm of the
transfer function. The Cepstral Coefficients were obtained directly from the LPC
coefficients. Atal defines the ceptsrum as the inverse Fourier transform of the logarithm
of the transfer function [1].

InH(z) =C(z) = ickz"k
k=1

The all pole filter model based on predictive analysis on speech samples is
G

P -k

1+ ZH Ipc,z
It can be shown that, given the all-pole model, a recursive relation exists between the
cepstral coefficients ¢, and the predictor coefficients a,.

H(z) =

¢ = lpcl
k-1 )
C, = Z]:](l - 'i;)lPC,Ck_, +lpck . 1<k < p (20)
f,
== ~3
P=t000"7 7

The sampling frequency f, determines the number of poles, modified by a fudge factor.

2.3.1.6 Delta Cepstrum (from [26])

Given ¢, and c,, , the cepstral representatibns of two bursts, the delta cepstrum is found
for the first p cepstral coefficients:
2
P

degp = Z(cm - C;u) (21a)

m=1

In order to equalize the contributions from individual cepstral components, a weighted
cepstral distance is desirable. Using the Manalanobis distance, and since the estimated
covariance matrix is essentially diagonal, we obtain:




P 2

dyczr = Y (Cn =) Wa | (21b)

m=1
where the weighting coefficient w,, is the reciprocal of the variance of the mth cepstral
coefficient.

The generalized slope in time has the following form:

K
Zk*hk *clll(t+k)

Ac, (t) = =% —
Db *k?
=K

2.3.2 Mel Cepstral Feature

Linear prediction cepstral coefficients generated from the LP spectrum and distributed
along a linear frequency axis, form a less than optimal representation of an auditory
signal since a logarithmic function of frequency better approximates the ability of the
human ear to discriminate frequencies. The Mel scale is often used to approximate the
resolution of the human auditory system’s perception of speech. Deller et al. defines the
Mel as "a unit measure of perceived pitch or frequency of a tone." An equation for
approximating the Mel scale is:

(21¢)

~ 1000 F,
F;nel = iz)gTz)'log(l + H%OOO)

The Mel frequency cepstral coefficients (MFCC) are obtained by Mel warping the
spectrum’s frequency scale before taking the fast Fourier transform

Mel cepstrum = FFT(log|Mel spectrum)

Development of Mel Cepstrum. The Mel cepstral coefficients are generated by the
following procedure:

1. Calculate the Mel Bands: The Mel bands are calculated from N, the number of Mel
bands, and the start and end frequencies, £, and f,

end>

me -fs art .en
fs'mr:,end = 2595 log(l + #;_O_d

Fong = ot
bands
Each band is a multiple n of the step in Mel frequency and is calculated by:

Step =

mel %
Sstart1*st2p

band! = [10 »95 - — IJ *700

Each band is converted to the integer value of the sample to which it corresponds,

10




. , N som
band ™ = [band,, bandof][(bandl{,,hm  yand? )] +0.5

2. Weight Bands: A square filter is used to weight the bands. It is an all pass function for
each of the Mel bands.

3. Preemphasize: See section 2.3.1.1 above
4. Hamming Window: See section 2.3.1.2 above.
5. Fast Fourier Transform (FFT): The FFT for the discrete signal with N, points,

which is a power of 2, which produces the discrete fourier transform dft,

6. Weighted cepstral: The magnitude of the DFT is weighted by the appropriate weight
for the band and the inverse log taken to form the cepstrum.

l w’” dﬁﬂl 22
O band™ — band,™ . 22)

7. Discrete Cosine transform (DCT): The DCT is performed on the weighted cepstral
components to obtain the final result.
N ster _
c[l = Zl * C, COS[M

m=0

J 1=0,1,2,....M (23)

Silter

2.3.3 Feature Averaging

An averaging of each of the features was done. Each individual feature is averaged over
all the features for each of the N,,, segments,

Nima‘(
2
j=0

i —
f unscaled ~ N Max

J

(24a)

2.4 Feature Selection

The feature sets selected for final implementation for speaker recognition were based on
the results of Pellissier [19]. The set utilized was

e LPC Cepstral (7 coefficients), defined by equation (20).
e Reflection coefficients (12 coefficients), defined by D’Urbin expansion in 2.3.1.4
e Mel Cepstral (13 coefficients), defined by equation (22)

Additional features considered during testing:
Delta Cepstrum

Pitch

Energy

Listener Model
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3. CLASSIFIER PREPROCESSING

A series of experiments was performed to assess the usefulness of preprocessing speech
feature data for the classifier. The overall structure for preprocessing is a test structure
which develops a set of short-term hypotheses about the current signal and tests to
determine which segments of the signal should be passed on to the actual classifier or to
long-term hypothesis memory. A block diagram of the preprocessing scheme is shown in
figure 2.

() Signal Classify Short Test
? Control > Term
> > Hypotheses
Hypotheses
compare |
store
A4 reject accept
Signal Complete > Short-Term
Hypothesis current
memory hypothesis
Periodic Interrupt
1 v
. Long-Term Classify Long
Retrain Long Term Hypotheses

Term Memory RY:::::;LS <

control/
update

Classifier Preprocessing System
Figure 2

The hypothesis and test paradigm was investigated to select information to be learned by
a Neural Network Classifier and reject information that was unsuitable. The criteria of
the selection are made on the basis of the intersegment global information structure. The
segment data are rated according to their:

1) overall rating similarity

2) grouping of like versus unlike segments in time.

The overall rating similarity was done by class average results of the preclassification
process, i.€., for each potential class, an average of the result was given,

avg =a(i)/sum a

For the grouping of like terms, a network of all segments in a “group” of segments, which
is a related unit, are compared in their time relationship to each other. Thus, if two
segments next to each other are of like pre-class, the linkage is strong, whereas, if two
segments are separated by an unlike segment, they have less linkage and so on. A
directed graph of relations was created and used to rate linkage strength.
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The incoming signal was tested by subjecting it to a series of classifications that are
stored in short-term memory (STM). After the series are completed, the contents of the
STM are tested according to the grouping and linkage criteria using an expert system.
The results of the test determine if the STM contents are allowed to retrain the long-term
memory (LTM). Each data point is retrained and if accepted by the test, reclassified, and
finally stored. Additionally, an optional periodic retraining of long term memory using
all accepted signals over a finite period is done to eliminate any long term averaging
effects on the individual speaker signatures. An optional output of each result of the
current hypothesis is available for further processing.

4. NEURAL NETWORK CLASSIFIER

The recognition of a speaker from a set of features requires a clustering/classification
process which is able to form any number of classes dynamically, and tolerate the noisy
and overlapping domain of speaker feature vectors. In this effort, ART model [3-7] was
used to cluster and classify unknown speakers. There were three networks considered
during this investigation: ART [3,10,12], fuzzy ART [7,11], and fuzzy hypercube ART
[25]. After some preliminary testing of all three networks, emphasis was placed on
modification of fuzzy ART neural network architecture for speaker recognition.

4.1 Basic ART2 Neural Net /73]

The general operation of the basic ART2 neural network architecture is described. This
forms the basis for the fuzzy ART and fuzzy hypercube ART networks. A typical ART2
neural network is composed of two layers of fully interconnected neurons. Adaptive
connections between neurons store long term memory (LTM) traces in the network. LTM
represents information that the network has learned. Figure 2 shows basic architecture for
ART? neural network.

The two layers (or fields) of
neurons in an ART2 architecture in
figure 3 form the Attentional
Subsystem. The first field is named
the Feature Representation Field,
or F1. Each F] neuron contains

Orienting
Subsystem

Attentional .
Subsystem processing elements that form three
intra-PE  sublayers which are
responsible for processing one

element in the input pattern.

Wi
Basic ART2 Architecture
Figure 3
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The main function of the feature representation field is to enhance the current input
pattern's salient features while suppressing noise [23]. This is achieved through pattern
normalization and thresholding which are required for the processing of analog patterns.
Normalization compares the input pattern and the patterns stored in the network's LTM
traces. Thresholding maps the infinite domain of the input patterns to a prescribed range
[23]. The second layer in the attentional subsystem is called the Category Representation
Field, or F2. Each neuron in this field represents one category (or class) that has been
learned by the network. The connections from a particular F2 neuron store the pattern of

the category it represents.

ART?2 utilizes an unsupervised competitive learning technique in which patterns are
represented by points in an N-dimensional feature space. Pattern similarity is assessed on
the basis of a Euclidean distance which states that: Patterns that are sufficiently close to
one another are placed in the same category.

The N-dimensional centroid location represents that class' exemplar. An unsupervised
learning procedure attempts to discover the distributions and centroids of the categories
for the patterns it is presented.

ART? utilizes a "winner-take-all" classification strategy, such as MAXNET, that operates
in the following manner:

(1) An input pattern is presented to the feature representation field where it is
normalized and thresholded,

(2) The resultant signal, which is called short term memory (STM), is passed
through bottom-up connections to a category representation field,

(3) Each established class in F) responds to the signal with an activation level

which it sends to itself through excitory connections and to all its neighbors
through inhibitory connections,

(4) Eventually the F2 neuron with the highest activation will inhibit the others.
The sole remaining active F2 neuron is assumed to most resemble the current
input pattern.

Having selected the winner, the Orienting Subsystem is activated and determines whether
the winning neuron's LTM traces sufficiently resemble the STM pattern to be considered
a match. The degree of match between the two patterns is related to the cosine of the
angle between them in feature space. Patterns that are very similar are nearly parallel to
each other while dissimilar patterns are orthogonal to each other. A matching threshold
called the Vigilance Parameter determines how similar the input pattern must be to the
exemplar to be considered a match [24]. If the degree of match computed by the
orienting subsystem exceeds the vigilance parameter, a state of resonance is attained and
the STM pattern at F is merged onto the winning neuron's LTM traces. Otherwise, the
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orienting subsystem sends a reset signal to the winning neuron, and inhibits it from
competing again for the current input pattern [23]. This search process is repeated until
either an F7 neuron passes the vigilance test or all established F2 neurons have failed the

test. In the latter case, a new category is established in the next available F2 neuron.

Learning is considered to be competitive since each F2 neuron attempts to include the

current input pattern in its category code. The actual learning process, whereby the
current input pattern is encoded into the network's memory, involves modification of the
bottom-up and top-down LTM traces that join the winning F2 neuron to the feature
representation field. Learning either refines the code of a previously established class,
based on any new information that is contained in the input pattern, or initiates code
learning in a previously uncommitted F2 neuron [3]. In either case, learning only occurs
when the system is in a resonant state. This property ensures that an input pattern does
not obliterate information that has been previously stored in an established class. A basic
ART architecture was used in prior recognition efforts with some success [12].

4.2 Fuzzy ART

The basic operation of “adaptive resonance” in the standard ART is carried over to the
fuzzy ART. The basic equations which govern the fuzzy ART are based on the equations
from the standard ART architecture where the intersection operator is replaced by its
fuzzy counterpart, the minimum operator. Several of the operations are different,
however. The top-down and bottom-up matching processes are combined, since the
matching between input and category is the same in both directions.

An introduction of the mathematics governing the fuzzy ART is given here based
primarily on Carpenter & Grossberg [5, 6, 7]. This will utilize the fuzzy hypercube ART,
along with modifications and additions in the next section. ‘

The fuzzy ART system consists of three layers: the input layer (F0), processing layer
(F1), and output category (F2) layer. Associated between layers F1 and F2 are a set of bi-
directional weights denoted bottom-up, directed from F1 to F2, and top-down, directed
from F2 to F1. The following operations and data structures are associated with each of

these layers:

A =a; i=12,...M and, optionally,
E_Qi 1 i .p y

(25a)
A4 =d",,=(1-a_,) i=M+1.2M

where M is the number of input components with optional complementation and number

of category nodes N.
Note that, if the complement is added to A, that the complement coded inputs are self-

normalized:

|A|=|(asacl=ia,- +i(l—a,-)= M (25b)
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FL: 7=(x,%,,)
_ {A , F,  inactive
X =

26
Anw;, J"F? node chosen (262)

through choice function (27b)

The choice is made as “final” if the preliminary choice x meets a threshold criterion
called the vigilance test,

=
26b
|AAle>p (26b)
4

If the vigilance criterion is not met, the preliminary choice [J] is said to be “reset,” and
another choice is made from the set of active categories in y. If there are no more active
categories, a new category is created.

F2:
YV =(Vyss Yy )With  associated
- . (27a)
W, =W, W,5y,)  weights(LTM)
The category Choice Function T} is defined as:
|A AW il
T, = ) (27b)
Toa+lw)|
where a > 0 is a choice parameter, and the norm is defined as
P =2 P/ @7¢)
The category choice is made on the basis of a maximum function,
T, = max{T}} (274d)

If the choice of category made in (17d) passes the vigilance test of equation (16b), then
the category is accepted and learning of the weights occurs as follows:

Wi = ,B(A Awo ) +(1-gyws” (27e)

Fast learning is said to occur when S =1.

4.3 Fuzzy Hypercube ART

The ART neural architectures described in sections 4.1 and 4.2 both did not perform well
during speaker recognition testing. They generally suffered from poor tolerance to noise.
Modifications of the Fuzzy ART were done to improve performance. Several basic ideas
were implemented. One was the current representation of the output categories as
hypercubes. An overall volume parameter bounded each hypercube volume. In order to
provide some noise tolerance, the hypercubes were additionally fuzzified. Several other
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basic functions were extended, including the category choice function, the inclusion of
hypervolume limits, and the generalization of the learning algorithm with fuzzy
hypercubes. A general overview will be given of the network layer structure, with a more
detailed functional description.

4.3.1 Fuzzy Hypercube ART Structure
The fuzzy hypercube neural network has seven layers of processing. Figure 4 shows their

interconnection. Each of the layers is briefly described below. One specific item to notice
is that the network is both feedforward and feedback. Specific category information is fed
back to the Hypothesize and Fusion layers for hypothesis formation, as well as to the
Functional layer in category adjustment and learning. Additionally, the resonate/no
resonate is an enable/inhibit signal which effectively cycles the entire network in
processing data sets synchronously.

Categories
T T ] T
I % —
Create Adjust Learn
Functional

no resonate

Test

resonate

winner .
no winner

no winner

Hypothesize

T

Fusion

I

Transform

Fuzzy Hypercube ART
Layer Structure
Figure 4 T

Input

|

A

Input: fuzzified and optional functional expansion, equations (15a,b).
Transform: Category choice functions are evaluated over active categories.

Fusion: The category choice functions are fused to final ratings.
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Hypothesize: A final category rating is chosen as a “hypothesis,” otherwise, a new
category is created.

Test: A vigilance pass/fail test is performed matching input to chosen category.
Functional: Categories are created, hypervolume adjusted, or input learned.

Category: Hypercube feature vectors, and control .

4.3.2 Fuzzy Hypercube Differences

The fuzzy hypercube ART neural network has several distinct differences from the basic
ART and fuzzy ART. It retains the basic data structures using A and X vectors. The
concepts of bottom-up and top-down match as well as the learning rules are very
different. The fuzzy hypercube layers and the differences between prior ART
architectures and the current one will be described in the following sections. A detailed
view of the network is shown in figure 5, where each of the blocks from figure 4 are
broken down to the next level of details.

4.3.3 Input Layer

The Input layer has several inputs and outputs. An enable/disable set of inputs
effectively controls the resonation of the network. The network is either allowed to
continue cycling through with the current input A, when a suitable category is not found
by the Hypothesize/Test layers, or to stop the current input and enable the acceptance of
the next input upon finding a suitable category (or creating a new one).

The Input layer, if enabled by a “no resonate” signal, fuzzifies and optionally expands the
input information. Each input dimension in A is translated into a fuzzy membership
function onto the [0,1] interval, which indicates the degree of absence, by its nearness to
its lower bound, or presence, by nearness to its upper bound. The translation is a

mapping F = {f} — [0,1]

This operation requires a pre-learning of the maximum F!_ and minimum F, i

expected value for each individual feature. For each feature i, £ _ ., we scale it to

- - S nscated
f:caled s by. f s'caled = —#qe—,‘_— (28)
|F Max ~ F Alinl
The set of scaling coefficients, |F}, — F;, |, for each feature [j] can be considered as
weighting factors, determined by some learning function, but in the form of the difference

between two quantities, not absolute values.

The method of determining the values of F,, and F,, were not performed during
normal operation of the neural network, but off line, and provided as inputs to the
process. The values F,, and F,, were experimentally determined from observation of

the maximum and minimum values of each of the features [j]. Note that outliner feature
values outside of the given scaling ranges are normalized to 0.0 or 1.0 to indicate either
full membership, or no membership in the feature set.
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4.3.4 Transform Layer

Membership values from the Input layer are passed to the Transform layer, where they
generate two membership functions for each active category node, a “Degree of
Inclusion” (DOI), and a “Degree of Perfect Match” (DPM). These memberships together
give an indication of the degree to which the input matches each feature category
hypercube. The development of memberships is done through a fuzzy procedure (see
Egs. 31-34).

The choice function (Eq. 27b) has been expanded by Carpenter and Gjaja [8] to Choice-
by-difference. Simpson [25] develops a membership function which measures the degree
to which an input A fits within the hypercube defined by Eq. 33. He defines a function
b, which approaches 1 as the point gets nearer to the hypercube,

b, (Ah’Vj’Wj)z ;11'; (- f(ahi - Wﬂ,r)” f(vji - a,".,},)] (29)
where f() is the ramp function,
1 if xy>1
fxy)=qxy if 0<xy<l (30)
0 if xy<0

The choice function is generalized to a hypercube match. The choice function is defined
by two related nonlinear functions, the degree of inclusion and the degree of perfect
match, which are developed in parallel, and combined by a fusion function.

Degree of Inclusion.

The degree of inclusion (DOI) function measures the level to which each dimension of
the input A, is inside a category hypercube.

A
u(x,y) DOI is a trapezoidal membership
function which gives full
1.0 membership whenever an element

of A, is included in a category,
and less than full membership
outside, depending on the

RS . .
L. V. W M distance to the hypercube. Figure
I:— I ! ’ 6 describes the shape of the
1 Trapezoidal Degree of Inclusion membership function.

Figure 6
Y

The membership for DOI, 2% (x) is defined for each dimension of a hypercube H;:

H, = (112 1K) (31)

20




1 if xzhjz.or x<h
(32)
' 1.0-(x-43
,ufOI(X)=< —T;F%—h"l—j_) if h;2x>h;
J j
1.0+ (x - #2) .
W if hi<x<h
0 if x>h} or x <h

Usually, \h,‘ - hjzl = |hj3 —h_fl to evenly fuzzify the hypercube. The overall membership

function g ”°' (x) is the sum of the individual memberships:

© )= 1 | (33)

Degree of Perfect Match. The measure of the distance from the mean of each dimension
of H; is defined as the degree of perfect match (DPM). The DPM is a similarity relation
between the input x and an individual category. The dissimilarity is defined as the
difference between the value x and the mean of the category x, m;:

Dissimilarity ; = |x -m j| (34a)

The similarity is the complement of the dissimilarity,
Sim, = Dissimilarity§ =1- \x - mj’ (34b)

The membership for DPM, u”" (x)is defined for each dimension of a hypercube H;

and is derived as follows. The mean of each dimension is

m, = V) =", % (34c)

and the membership function for each dimension j is

DPM 1_|x_Vj|*P(x)if w; =V,

”"' (x)={ 1-fx-m,|* PR W, =7, 49

where P(x) , the possibility of vigilance is defined as,
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x=>T,
0 7 1>2" Ly >1
P(x) =1 T, (34¢)
else
| d
The overall membership function 1 °" (x) is the sum of the individual values,
7

4.3.5 Fusion Layer

The DOI and DPM from the Transform layer, as well as certain feedback category
information, comprises the input to the Fusion layer. The fusion of the membership
functions for degree of inclusion and degree of perfect match are done with a dynamic
weighting and normalization of the two functions. The dynamic weighting is done to
compensate for low DOI at the start of a matching process

R (x) = by ™™ (x) + by ™ (x) (35a)
where
k, =min(k, * NC,1
2 (ks ) (35b)
k= kzc
and NC, the node constant, is a dynamic weighting function defined as:
065, N, =1
085, N,.=2
NC(j) = ‘ 35
D =109s, w, =3 (359
1.00, N.>3

4.3.6 Hypothesize Layer

The inputs from the Fusion layer form a number of potential hypotheses from which a
single hypothesis is chosen. The hypothesis is formed by a maximum over all the input
possibilities.

Winner, C, =max{R*}if R*is activeand R*>0
g (35d)
NoWinner,if R'is inactiveover 0<k<n

The resultant hypothesis of Winner is passed with the winning category node to the Test
layer, while the No Winner Hypothesis is passed back to the Input layer to halt resonation
of the network, as well as to create a new category node for the current input A.
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4.3.7 Test Layer

The Test layer performs the vigilance test on the current input A and the category input
hypothesis. The vigilance test, in the standard and fuzzy ART, is a vector matching
process as shown in Eq. 29b. In the fuzzy hypercube ART, the vigilance test is a general
test for category hypercube membership. The test is performed using a modified form of
Eq. 16b,

5c'| " |A AW J| adi

Bl p, or =rdl> p™

477 A=

where p™ = pg(n), g(n) is the vigilance adjustment function, and n is number of times

a category is visited.

The Test layer has several outputs depending upon the result of the vigilance test. If a
category passes the test, the Input layer is signaled to halt resonation of the network, and
that category is passed to the Functional Layer. Additionally, the category layer is re-
enabled for all nodes to compete in hypothesizing and testing of the Fusion and
Hypothesis layers.

In the case when a category fails the vigilance test, the Input layer is signaled to continue
resonation and hence block any input until either a category is matched or a new one is
created. Additionally, the category which failed the vigilance test is prohibited from
. competing with the current input until either another category passes the test, or a new
category is created.

4.3.8 Functional Layer

The Functional layer is a series of services performed on the final Category layer. These
services are: Hypervolume Measure, Hypervolume Test, Hypervolume -Adjust,
Hypercube Learning, and Hypercube Creation.

Hypervolume Measure. The hypervolume hv is calculated by the product of the LTM
weights as below:

w=T10% V) (36)

Hypervolume Test. The overall hypervolume of each hypercube is maintained within
bounds in order to keep the hypercubes from expanding to infinite volume. The limit is
essentially a bound for learning in the network. The volume parameter is defined as
follows:

Z(W, -V, )<volume or
@37

nA < volume

The value N is the number of input nodes and Athe hypervolume per node. The
hypervolume limit testing and adjustment is necessary since each of the dimensjons ofa
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hypercube are not constrained, such as in the case of fuzzy ART where the weights must
be strictly decreasing. In [25], the hypervolume limits on the categories are limited to the
unit hypercube as follows:

> (a0, ) - min(s, ., ))<e. (38)

i=1

0<B<1
The problem with the hypervolume test above is that it cannot easily accommodate
“noisy” hypercubes in the category layer. Since this is a problem with the basic fuzzy
ART, the limit must be changed to allow for noisy data. In the case of the fuzzy
hypercube ART network, the hypercube volume is constrained to be less than a maximum
limit, hv_,,

O<hv,, (39)
An additional parameter is defined, hypercube dimension, hd,,,, assuming equal size in
each dimension: .
hv
hd =—2=% 40
max N ( )

Hypervolume Adjust. If the limit hv,,, is exceeded, the entire hypervolume is adjusted to

maintain inequality (Eq.42b). The excessive volume Ahv is found from the current
hypervolume, hv, by the following:

(hv- W)/ N  hv>hv
Ahv = ) @4n
0 Otherwise

where N is the input dimensionality. The hypervolume of the current category [J] must
be adjusted whenever Ahv >0 by

W = max{(W/* — Ahv),0}

V" = min{(V;" + Ahv),1}
This operation brings the hypervolume of each selected category within the value of
hv,

max*

(42)

Hypercube Learning. The inclusion of input A; into the winning category hypercube B, is
done through a learning algorithm which adjusts the hypercube of category [J]. In
general, each value of A,, selectively adjusts its respective limits in W; and V, .

Given an input vector A; and a hypercube B}, and a learning adjustment factor r, learning
on a case by case basis is performed for each dimension of A over the entire chosen
category B; as follows:

Case 1: Initialization.
Wi =V = 4
whenever W < A, and V)" > 4,
Case 2: Input is above W,

(43a)
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W = W};"' (I-r)+r4,

43b
whenever 4, >W;"and A; <V;" +hd,,, (43b)
Case 3: Input is below V,
Ve =Voi(1—-r)+r4,
Ji Ji ( ) i B § (430)
whenever A, <V;"and A 2W;" —hd_,
Case 4. Input is within B,.
Whenever A, 2V and A, <W}":
4a) Input is closer to W
Wi =W (1-r)~r4,
Ji Ji ( Id) i § (43d)
whenever W, — 4, > 4, -V,
4b) Input is closer to V .
Vi =V (1-r) +r4,
Ji Ji ( ) Id, Y (436)
whenever 4, =V >W;" — 4,
V;I’;ew = Ai - VVJ';M - hdmax :
ld ld (43t)
whenever A, >W;" and A, <V  +hd_,
Case 6:
Wit <Vt = A, + i
(43g)

whenever A, <V and A, >W;" —hd

max

Hypercube Creation. The creation of a hypercube requires that the overall hypervolume
limit is adjusted through the hypercube dimension, hd,,,, which depends on the number
of categories in the network, N, from equation 30.

4.3.9 Category Layer

The Category layer consists of a set of complex neurons with associated states and LTM
weight values which describe them. The LTM weights are associated with the min-max
feature hypercube representation of the associated J-categories defined by Simpson [25].
Each hypercube category C is a fuzzy cluster defined by:

c, ={B,,N’",T7,8"}
B, = {VJWJ} j=12,..,N__ (44)
VW, <]
where N7 is the count of adjustments, 7” is the confidence and S’ is the state of

category [j]. B; is the hypercube representation of category j, V; is the minimum point, W;
the maximum point, and N,,, the total number of categories.
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4.4 Category Merge

A global merge is defined as the combination of cluster classes produced by the neural
network which are very “close” to one another. This operation is performed outside of
the neural network processing and does not affect any of the internal operation of the
network. It does, however, utilize detail parameters generated by the network, and hence
can be considered a higher order operation of the network which is bound to its operation.
This process also occurs over time between NN cycles and can be considered a long-
term-averaging process.

4.4.1 Merge Parameters

There are two measures which are used to indicate whether a global merge is to take
place:

a) Volume difference between hypercube categories

b) Magnitude of rating R from equation (41) between two categories.

4.4.2 Merge Criteria

A function is defined which performs the category merge. First, the merge parameters
are obtained over all possible different pairs of the current categories defined. Next, the
merge criteria are applied and used to partition the current categories into a final set of
categories which is compacted using the criteria. Note that the compacting occurred very
rarely during testing.

The criteria are expressed in terms of acceptance/rejection regions in the volume
difference/rating mapping.

00 < Avol(cl,c2) £110and R(cl,c2)>100 OR
11 < Avol(cl,c2) £150and R(cl,c2)>100 OR (45)

L5 < Avol(cl.c2) <£1.75and  R(cl,c2) >1.40
These were experimentally derived and were only used to evaluate the concept of global
clustering criteria within the context of the hypercube structure.

4.5 Initialization
The initialization is performed on the network as follows.

I.1 Enable all categories, set count, and confidence is “none”.
N’ =0, T/ =none, S’ =-enabled (46a)
1.2 Set all categories

yiee=1, Wi =0, fori=12,..N J=12,.,N, (46b)

ax
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5. TEST METHODOLOGY

5.1 Test Data

There were two data sets used for the formal testing of the system, the Switchboard [27]
and the Greenflag [28].

Spkr1  Spkr2 Spkr3 Spkr4 SpkrS5 Spkr6  Spkr7 Spkr8 M/F

Set 1 02 15 38 46 62 81 28 33 612
Set 2 04 a1 7 02 15 38 46 62 573
Set 3 05 23 27 4 56 59 17 32 474
Set 4 15 38 46 62 81 28 33 76 7
Set5(1) 04 a1 72 02 15 38 46 62

Set5(2) 32 35 65 90 39 82 106
Set6(1) I5 38 46 66 04 41 72 02

Set6(2) 6 90 39 82

Set 7 57 17 2 35 65 90 39 82 573
Set 8 72 02 15 38 6 62 81 78 573
Set 9 90 39 82 04 a1 72 02 15 a4

Table 1: Switchboard 95 Test Set to Actual Speaker Reference

Spkr1  Spkr2 Spkr3 Spkr4 Spkr5 Spkr6 Spkr7  Spkr8

Set 1 ccz cev cdi cdk ced cch cdn cdt
Set 2 cdw cfp cfj cel cev cfs cfu cfx
Set 3 cfi ccv cdi cdk ced cin cdn cdt
Set 4 cga cfp cfj cel cev cfs cfu cfx
Set 5 cgm chs ckd che cdk chg cch ccz
Set 6 cgp chs ccd che chy chg cfu cfx
Set 7 cgx chs ced che cdk chg cfu ccz
Set 8 che cel cde cgx ced cin cdn cdt
Set 9 chj chs chn cii cin chg cif cik
Set10 (1) ccz cev cdi cdk ced cch cdn cdt
Set 10 (2) chj chs chn cii cin chg cif cik
Set 11 chy cel cji cgx ced cin cdn ceb
Set 12 cdv cen ckb cge cin ckd cif cic
Set 13 cke chs ckb cii cin chg cif cik
Set14 (1) ccz cev cdi cdk ced cch cdn cdt
Set 14 (2) chj chs chn cii

Set15(1) cega cfp cfj cel cev cfs cfu cfx
Set15(2) cgm chs che chg

Table 2: Greenflag Test Set to Actual Speaker Reference

5.1.1 Switchboard data set.

The Switchboard data were grouped into sets of 8, 12, and 16 speakers. The actual
breakout of the speakers is shown in Table 1. The vertical entries are the 9 speaker sets
consisting of the actual speakers given by the file numbers of individual speakers in the
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data set. Additionally, the numbers of male/female speakers is given in the last column.
For a detailed description of the Switchboard database see [27].

5.1.2 Greenflag data set.

The Greenflag test data were organized the same as the Switchboard, except that there are
15 sets. The set ID’s are given by three letter combinations all beginning with a “c”. See
Table 2, Greenflag Test Set to Actual Speaker Reference, for the breakout. For a detailed
description of the Greenflag database see [28].

5.2 Test Conditions

The subsystems of Feature Processing, Feature Preprocessing, and Neural Network
Classifier were tested using the test data described in section 5.1. There were a number
of fixed and varied parameters corresponding to specific subsystems as given below.

All the below parameters are specifically related to the hypercube network. The basic
ART and fuzzy ART have different parameters and are so indicated below.

a) Feature Processing: fixed parameters
Mel Cepstral Parameters = 13
Reflection Coefficients = 12
LPC Cepstral Coefficients = 7
Correlation Order [O,,,= 13]
Number of LPC poles [p = 14]
Number of Mel bands [N,,,.= 12]
Max/Min values of Features [see Table 3]

O ¥1_y2 3 ¥4 ¥S Y67 8 1P  Jio i1 iz
LPC cepstrum Maximum 02 [0 0 0o P pb P
Mel cepstrum Maximum |[71.3 [6.9 F1.5 pP.5 2.0 8.0 }1.066 |06 5.0 0.3 2.7 0.1
eflection Maximum 0.5 045 10.25 025 02 (02 [0.18 [0.17 10.17 }0.22 0.17 [0.19
LPC cepstrum Minimum -0.8 04 025 0.2 0.2 [0.1 |0.1
Mel cepstrum Minimum [65.0 .7 5.0 17.0 4.5 6.0 3.0 54 2.0 B.6 1.5 R0 }0.6
eflection Minimum F0.057 +0.11 0.056 [0.1 007 0 © }0.01 0.012 |-0.05 }0.02 £0.051

Table 3: Maximum/Minimum Values of Features

b) Signal Segmentation: variable parameters
Total Number of Segments of Voice Speech Processed
Average Time per Voiced Speech segment
Minimum Time per Voiced Speech Segment

¢) Signal Segmentation and Voiced/Unvoiced: fixed parameters
Number of samples per segment [N, = 128]
AMDF fraction of samples per chunk [0.75]
Minimum and maximum pitch [ 2, =19,P_ =18.0]
Minimum and maximum zero crossing frequency [n,,, 0.6,n,_ = 5.0in Khz]
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Minimum voiced energy threshold [ E_;, = 1000 ]
d) Feature Preprocessing
Rule base for:
IF (Proportional # matched segments is N1)
AND (Proportional # linked segments is N2)

THEN (Hypothesis Truth that segment S represents a valid speaker is V)

e¢) Neural Network: fixed parameters

el) Fuzzy Hypercube/Fuzzy ART:
Maximum number of attributes in a pattern [NN_MAXATTR =5 0]
Maximum number of opinions per pass [NN_MAXOPINIONS = 2]
Maximum number of class that may be formed [NN_MAXCLASS = 50]
Lower limit, upper limit initialization value [LL_Init = 1.0, UL_Init = 0.0]

¢2) Basic ART: '
Maximum number of attributes in a pattern [NN_MAXATTR = 200]
Maximum number of opinions per pass [NN_MAXOPINIONS = 2]
Feedback from top layer [NN_TOPDOWN_FEEDBACK = 0.8]
Maximum number of pattern identifier [NN_MAXID = 20]
Degree of functional expansion [NN_FUNC_EXPAND = 10]
Lower limit, upper limit initialization value [LL_Init = 0.0, UL_Init =1.0]

f) Neural Network: variable parameters
Vigilance
Maximum Hypervolume

g) Overall System variable data & parameters
Test Data Sets
Number of Speakers
General ART vs Fuzzy ART vs Fuzzy Hypercube ART
Number of correct & incorrect classifications per Test Set

5.3 Test Results

The test data in 5.1 were applied according to the test conditions of section 5.2, and the
results are reported in this section. There were several parametric tests; measurements
were made on each test run in the following sections.

5.3.1 Feature Processing

Features were analyzed for two basic characteristics, separability, and maximum/
minimum values. The separability were observed using the XGOBI visualization tool. It
allows a multidimensional viewing of the features and their clustering ability. The
max/min values were determined from a basic test set not included in the test results.
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5.3.2 Neural Network

The following are parameters which were varied in the neural network during the testing:
Total Number of Actual Speakers Correctly Identified (i1), >= 1 class per node
Total Number of Invalid HCNs generated (i2)
Total Number of Invalid HCNs generated (i3)
Total Number of Invalid HCN’s generated (i4)

The value of i, is a count of the correct number of HCN’s generated by the NN which
corresponds to real speakers. This gives a number of the correct number of categories
generated, independent of the number of data sets presented to the network. The value of
1, is a count of the number of HCN’s generated by the NN which are in addition to the set
i.

{HCN}= ) {i, +i,)

allHCN's : (47)
i}n{,}=9

where HCN is a set of hypercube category nodes generated during a complete test run, I
is a count of correct HCN’s and i, is the incorrect HCN's count. Table 4 and Table 6
both display the results of I, as a function of the vigilance parameter and the maximum
hypervolume within a small range of values.

The values of i and i, are spurious nodes generated and count of data sets in the spurious
nodes. These values do not affect the values of correct/incorrect classification since they
generally consist of nodes with only one or two entries, which is the definition of a
spurious node. Table 5 and Table 7 display the spurious category creation in the network
as a function of vigilance parameter and maximum hypervolume, again within the same
small range of values.

Summarized test results for the fuzzy hypercube neural network performance are shown
in Table 5.

Test Data Set for 8 | Total Number of Total Voiced Overall Correct
Speakers Speakers in Test Speaking Time (hrs) Classification (%)
Switchboard May 95 26 2.69 69.7

Greenflag 41 2.96 70.3

TABLE 4: Test Results for 8-Speaker Group

5.3.3 Overall System

Parameters which are a measure of the overall system are given in this section.
Number of correct and incorrect classifications per Test Set
Total time per Test Set
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The average overall percent correct classification is defined by:

D2
,m; (TD2 ., +ID3, )
( S'm
testsetm
PC B oveeregl;ls M (48)
The numerator of the summation of Eq. 37 is the mean of each individual test performed,
while the exterior summation averages all the average classification fractions.

A series of tests which used the value of Eq. 37 were performed. First, two basic tests
were run to evalute the effects of the vigilance and hypervolume limit on P.. These are
shown in Tables 3 and 4. The absolute values of minimum and maximum obtained
during the entire test period are shown in relation to the mean value which is plotted
against the vigilance and hypervolume limit values.

The generation of the correct (C) and incorrect (I) classifications are related to the neural
network values I1-14, but were visually chosen from these sets as the values which
provided the greatest correct classifications per HCN. This would require a simple
program, which has the maximum number of entries as correct nodes, to choose the
distinct nodes. Also, the totals generated under the neural network required additional
data analysis and speaker truth.

The summarized results for the overall Switchboard and Greenflag data sets taken for 8
and 12 speakers are given in Tables 6 and 7.

Test Data Set for Total Number of Total Voiced Overall Correct
12 Speakers Speakers in Test Speaking Time (mins) Classification (%)
Switchboard May 95 12 16.71 67.25

Greenflag 23 4.77 68.75

TABLE 5: Test Results for 12-Speaker Group

Test Data Set for 8 | Average Number of Average Number of Average Number of
Speakers Correct Categories False Categories False Categories
Generated (8 max)  Generated (8 max)  Deleted per Data
Set
Switchboard May 95 6.29 0.29 1.86
Greenflag 6.57 0.23 5.77

TABLE 6: Fuzzy Hypercube Neural Network Test Results

The overall system test results are shown in Table 7. This includes all speaker groups.
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Test Data Set for Total Total Voiced Overall Correct Standard Maximum-
all Speaker Groups Number of Speaking Classification Deviation Minimum
Speakers Time (hrs) (%) (avg) (avg)
Switchboard May 95 26 3 66.9 5.0 14.5
Greenflag 41 3 66.6 6.6 13.4

TABLE 7: Overall System Test Results

6. DISCUSSION
6.1 Ovérall

The Overall testing results are shown in Tables 1, 2, 5 and 6. The results are synopsized
in Table 7, giving the standard deviation averaged over all groups for each group, as well
as the maximum to minimum value spread averaged over all the groups.

From these data, it can be seen that Greenflag had a smaller minimum to maximum
spread, and, with the exception of group #7, all appear well behaved. In the switchboard
case, the spread is much more in all groups with number 13 the greatest. However, the
switchboard data were still more well behaved and better clustered as is shown by their
better standard deviation value shown in Table 7.

The performance of the test groups is nearly identical at 67%, but this is for an 8 speaker
group maximum.

6.2 Recommendations for Future Research and Improvements

The recommendations for improving the current system with changes. and additional
areas of research are presented for the features, classifier, and overall system.The
following are areas that can be investigated for improvement to the speaker recognition
process:

a) Inclusion of new features. The inclusion of new features is a constant improvement
which can be made to the Speaker Recognition System feature processing. Some of the
features which may be of use are: :

1. Delta Cepstrum

2. Cepstrum with mean removal

3. Log Energy

4. Average Pitch

5. RASTA/PLP

b) Expansion of input through complementation
¢) Inclusion of listener models

e) Inclusion of specific verbal cue modeling for specific languages.
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